Transcriptomic analysis of the highly efficient oil-degrading bacterium Acinetobacter venetianus RAG-1 reveals genes important in dodecane uptake and utilization
نویسندگان
چکیده
The hydrocarbonoclastic bacterium Acinetobacter venetianus RAG-1 has attracted substantial attention due to its powerful oil-degrading capabilities and its potential to play an important ecological role in the cleanup of alkanes. In this study, we compare the transcriptome of the strain RAG-1 grown in dodecane, the corresponding alkanol (dodecanol), and sodium acetate for the characterization of genes involved in dodecane uptake and utilization. Comparison of the transcriptional responses of RAG-1 grown on dodecane led to the identification of 1074 genes that were differentially expressed relative to sodium acetate. Of these, 622 genes were upregulated when grown in dodecane. The highly upregulated genes were involved in alkane catabolism, along with stress response. Our data suggest AlkMb to be primarily involved in dodecane oxidation. Transcriptional response of RAG-1 grown on dodecane relative to dodecanol also led to the identification of permease, outer membrane protein and thin fimbriae coding genes potentially involved in dodecane uptake. This study provides the first model for key genes involved in alkane uptake and metabolism in A. venetianus RAG-1.
منابع مشابه
An exocellular protein from the oil-degrading microbe Acinetobacter venetianus RAG-1 enhances the emulsifying activity of the polymeric bioemulsifier emulsan.
The oil-degrading microorganism Acinetobacter venetianus RAG-1 produces an extracellular polyanionic, heteropolysaccharide bioemulsifier termed emulsan. Emulsan forms and stabilizes oil-water emulsions with a variety of hydrophobic substrates. Removal of the protein fraction yields a product, apoemulsan, which exhibits much lower emulsifying activity on hydrophobic substrates such as n-hexadeca...
متن کاملGenomic and phenotypic characterization of the species Acinetobacter venetianus.
Crude oil is a complex mixture of hydrocarbons and other organic compounds that can produce serious environmental problems and whose removal is highly demanding in terms of human and technological resources. The potential use of microbes as bioremediation agents is one of the most promising fields in this area. Members of the species Acinetobacter venetianus have been previously characterized f...
متن کاملInvolvement of a protein tyrosine kinase in production of the polymeric bioemulsifier emulsan from the oil-degrading strain Acinetobacter lwoffii RAG-1.
The genes associated with the biosynthesis of the polymeric bioemulsifier emulsan, produced by the oil-degrading Acinetobacter lwoffii RAG-1 are clustered within a 27-kbp region termed the wee cluster. This report demonstrates the involvement of two genes of the wee cluster of RAG-1, wzb and wzc, in emulsan biosynthesis. The two gene products, Wzc and Wzb were overexpressed and purified. Wzc ex...
متن کاملAnalysis of the wee gene cluster responsible for the biosynthesis of the polymeric bioemulsifier from the oil-degrading strain Acinetobacter lwoffii RAG-1.
A cluster (27 kbp) of genes responsible for the biosynthesis of the amphipathic, polysaccharide bioemulsifier emulsan from the oil-degrading Acinetobacter lwoffii RAG-1 was isolated and characterized. The complete sequence of this cluster, termed wee, consisted of 20 ORFs. One set of 17 ORFs was transcribed in one direction, while a second set of three ORFs, 607 bp upstream of the first, was tr...
متن کاملBacterial degradation of emulsan.
Emulsan is a polyanionic heteropolysaccharide bioemulsifier produced by Acinetobacter calcoaceticus RAG-1. A mixed bacterial population was obtained by enrichment culture that was capable of degrading emulsan and using it as a carbon source. From this mixed culture, an emulsan-degrading bacterium, termed YUV-1, was isolated. Strain YUV-1 is an aerobic, gram-negative, non-spore-forming, rod-shap...
متن کامل